
A GRASP algorithm with tree based local search for designing a survivable
Wide Area Network backbone

Héctor Cancela
�

Facultad de Ingenierı́a, Universidad de la República

Montevideo, Uruguay

and

Franco Robledo

Facultad de Ingenierı́a, Universidad de la República

Montevideo, Uruguay

and

Gerardo Rubino

IRISA, INRIA

Rennes, France

Abstract

System survivability is the ability to give service in spite
of failures of some of the components. To assure surviv-
ability is an important goal when designing a communi-
cations network backbone, to ensure that it can resist
to failures in the switch sites as well as in the connec-
tion lines. Previous work has employed a Greedy Ran-
domized Adaptive Search Procedure (GRASP), based
on path algorithms, to build low cost network topologies
which comply with heterogeneous node-connectivity re-
quirements, which can model the survivability goals. In
this work, we present another variant of the GRASP pro-
cedure, based on a tree search, which obtains good re-
sults in topologies with a large number of switch nodes.
Keywords: meta-heuristics; GRASP; topological de-
sign; survivability; node connectivity.

1 Introduction

A wide area network (WAN) can be seen as a set of
sites and a set of communication lines that interconnect
these sites. A typical WAN is organized as a hierarchical
structure integrating two levels: one backbone network
and a number of local access networks [9]. Each local
access network usually has a tree-like structure, rooted
at a single switch site of the backbone network, and con-
nects users (terminal sites) either directly to this switch
site or to a hierarchy of intermediate concentrator sites
(local servers) which are connected to the switch site.
The backbone network has usually a meshed topology,
to allow efficient and reliable communication between
the switch sites of the network that act as connection
points for the local access networks (eventually incor-
porating other switch sites for efficiency purposes).

�

cancela@fing.edu.uy, robledo@fing.edu.uy, rubino@irisa.fr

One important aspect about the topology of a back-
bone network is its survivability, which is the ability to
continue in operation after failures of some of its switch
sites and links. To take this aspect into account when de-
signing the network, it is possible to specify a connectiv-
ity level, and search for low cost topologies which have
at least this number of disjoint paths (either edge dis-
joint or node disjoint) between pairs of switch sites. In
the most general case, the connectivity level can be fixed
independently for each pair of switch sites (heteroge-
neous connectivity requirements). This problem can be
modeled as a Generalized Steiner Problem with Node-
Connectivity [12, 16]; finding a minimum cost topology
with these constraints is a NP-hard problem. Some ref-
erences in this area are [7, 9, 13, 15]; these works are ei-
ther focused on the edge-disjoint flavor of the problem,
or explore particular cases (for example, where the con-
nection requirements are the existence of two disjoint
paths for all pairs of switch sites [1, 8]).

Topologies verifying edge-disjoint path connectivity
constraints assure that the network can survive to fail-
ures in the connection lines; while node-disjoint path
constraints assure that the network can survive to fail-
ures both in in switch sites as well as in the connection
lines. In a previous work [3], we have used the GRASP
methodology and proposed a path-based algorithm for
finding a Backbone network topology that satisfies con-
nection requirements on the number of node-disjoint
paths, working upon the Generalized Steiner Problem
with Node-Connectivity model.

In this paper, we present a different, tree-based algo-
rithm, for the search phase of the GRASP method. Sec-
tion 2 formalizes our backbone network design problem
(BNDP). Section 3 presents the GRASP meta-heuristic,
and Section 4 introduces the tree-based local search for
solving the BNDP. Experimental results are presented in
Section 5, showing that the algorithm works very well

rubino
JCST 4(1), April 2004

for a number of test cases corresponding to quite dif-
ferent topologies and connection requirements. Finally,
conclusions and future work are presented in Section 6.

2 Notation and Problem Formal-
ization

We introduce the notation used to formalize the prob-
lem:

����� is the set of sites where the switch equipments
can be installed; these sites also will be called po-
tential switch sites or backbone sites. The number
of the switch sites is given by � ���	� �
��� .

����������� � � is a distinguished subset of switch sites,
which will always be included in the backbone net-
work topology (usually because they are the access
points for some local access subnetworks). We
usually call these the fixed sites of the backbone.
The sites in � ��� � ������ are called non-fixed sites or
Steiner nodes.

������������� � �"! �$#&% �����' is a matrix of requirements of

connection between pairs of sites of � ������ . We will
require �(��� node disjoint paths between fixed sites)

and * , where �(��� usually is strictly greater than 1.

��+,�-��.$��� � �"! �$#&% ' is the matrix which gives for any
pair of sites of � � , the cost of laying a line be-
tween them. When the direct connection among
both places is not possible, we take .����/�10 .

��23�4�65)87 *:9<;>=)@? � � 7 =A* ? � �CB .$���EDF0G� , this is
the set of feasible connections between two switch
sites.

��H�IJ�45K�
� 7 2 9 is the graph of feasible connections
on the Backbone Network.

We define our Backbone Network Design ProblemLNMPORQ 5K� � 7 2 7 + 7 � 9 as the problem of finding a sub-
graph SUT of H I of minimum cost such that SVT sat-
isfies the connection requirements specified in � . We
will denote by WXTZY �\[the space of feasible solutions
associated with the problem.

3 A Greedy Randomized Adaptive
Search Procedure (GRASP) for
the BNDP

GRASP is a well known meta-heuristic, which has been
applied for solving many hard combinatorial optimiza-
tion problems with very good results [5, 6]. A GRASP
is an iterative process, where each GRASP iteration
consists of two phases: construction and local search.
The construction phase builds a feasible solution, whose

neighborhood is explored by local search. The best solu-
tion over all GRASP iterations is returned as the result.

Figure 1 presents the GRASP pseudo-code. The
GRASP takes as input parameters the candidate list size,
the maximum number of GRASP iterations and the seed
for the random number generator. After reading the in-
stance data (line 1), the GRASP iterations are carried out
in lines 2-6. Each GRASP iteration consists of the con-
struction phase (line 3), the local search phase (line 4)
and, if necessary, the incumbent solution update (lines 5
and 6).

Procedure GRASP(]�^K_8`�ab^Kc(d , egfih:jk`�d<l , mf nporqtsua
d$d<o);

1 jrniv:w6`�jrnx_y`�finpz8dr{"| ;
2 for }�~�� to egfih:jk`�d<l do
3 jrn�^�`�^"f ��abq���~��X�@��� �Z���6�����>�&�y��� ���"{�]�^K_y`>ab^"ckdt| ;
4]�qtzyf ��abq��x~g�Z���� ���r�<��� �i�<�t�>���x{�jrnp^�`�^�f ��abq���| ;
5 if z�qk_y`y{�]�qtzyf ��abq���|\��zyq(_y`8{��Cdt_8`�abq(�¡ ¢qtw:npo | then
6 £Xv:orfr`�dtabq��¤w6`�^�qtn�{��¥dt_y`>abq��¡ ¢q�w6n�o:¦�]�qtzyf ��abq���| ;
7 end for;
8 return �¥dt_y`>abq��¤w6`�^�qtn� ¢q�w:npo ;

Figure 1: GRASP pseudo-code.

In the construction phase, a feasible solution is built,
one element at a time. At each step of the construc-
tion phase, a candidate list is determined by ordering all
non already selected elements with respect to a greedy
function that measures the (myopic) benefit of including
them in the solution. The heuristic is adaptive because
the benefits associated with every element are updated
at each step to reflect the changes brought on by the se-
lection of the previous elements. Then one element is
randomly chosen from the best candidates list and added
into the solution. This is the probabilistic component of
GRASP, which allows for different solutions to be ob-
tained at each GRASP iteration, but does not necessarily
jeopardize the power of the adaptive greedy component.

The pseudo-code of §¢¨C©/ª «¬&�®>¯y°�±x²<¯8³A¬ ´ is given in
Figure 2. The algorithm works over the network H I of
feasible connections on the backbone network, the ma-
trix � of connection requirements between fixed switch
sites of ������� , and the matrix of connection costs + . The
current solution is initialized with the fixed sites without
any connection among them. An auxiliary matrix µ is
initialized with the values of � . This is used with the
purpose of maintaining on each step the connection re-
quirements not yet satisfied between sites of � ������ . The
paths found on each iteration are stored in a data struc-
ture ¶ where the elements in ¶ ��� are paths found from·�¸¹ to ·�º¹ , with ·(¸¹ 7 ·�º¹ ? � ������ .

Iteratively the construction phase searches for node-
disjoint paths between fixed sites of � ������ that have not
yet satisfied their connection requirements. The algo-
rithm chooses on each iteration such a pair of fixed
switch sites ·(¸¹ 7 ·�º¹ ? � ������ . The current solution is up-
dated by adding a new node-disjoint path between the

chosen sites. For this, we work upon an auxiliary net-
work and find the �) ·����)���� shortest paths from ·k¸¹ to ·�º¹
using a classical algorithm [17]. These paths are stored
in a restricted candidate list �	� . By construction, each
of these paths will be node disjoint with those already in
¶ ��� . A path is randomly selected from �	� and the cur-
rent solution is updated by adding this new path. More-
over the set ¶ of node-disjoint paths and the matrix µ
can be updated efficiently.

The �) ·
���)���� parameter is used to provide diversity
while limiting the computational effort. If �) ·����)���� �

, the algorithm would be a pure greedy method, build-
ing the same solution at every invocation. Larger values
of �) ·
���)���� allow to consider more path options at each
step, at the cost of more lengthy computations.

This process is repeated until all the connection re-
quirements have been satisfied; then the feasible solu-
tion ������� and the set of node-disjoint paths ¶ are re-
turned.

Procedure BNDP ConstructSol(]�^K_8`�ab^Kc(d);
1 � ������� {"a ������ ¦��k| ; e � m ; ��� � � � �p_ ¸! ¦�_ º !#" a ������ ;
2 while $is%� �'&)(do
3 Let _ ¸! ¦�_ º !#" a ������ be a randomly chosen pair of

fixed switch sites such that s%� �*&)(;
4 +� �-, I/. {10�2436587t{9��� ��| .;: _ ¸! ¦�_ º !=< | ;
5 Compute +> :

+z?� � �
@ (if ACB ¸D ! B º DFE #'G ����� ,z?� � if ACB ¸D ! B º D E # AIHG	J�G ����� E . ;

6 K �L� the]�^K_y`>ab^"ckd shortest paths from _ ¸! to _ º !
on +� considering the matrix +> ;

7 v � � �y� �y�y� M����N&��O {9K � | ;
8 � ������� � �����8P : v < ; ��� � � ��� � P : v < ;
9 e �RQ	S N6�t�>� T �$����UWV {X� ����� ¦�e�¦�m¥¦¡vp| ;
10 end while;
11 return � ����� , � ;

Figure 2: Construction Phase pseudo-code.

The solutions generated by the construction phase are
not guaranteed to be locally optimal with respect to sim-
ple neighborhood definitions. Hence, it is beneficial to
apply a local search to attempt to improve each con-
structed solution. A local search algorithm works in
an iterative fashion by successively replacing the cur-
rent solution by a better solution from its neighborhood.
It terminates when there is no better solution found in
the neighborhood. The local search algorithm depends
on the suitable choice of a neighborhood structure, ef-
ficient neighborhood search techniques, and the starting
solution.

In the following section, we present a Local Search
procedure which is based on a decomposition of the so-
lution in small building blocks (called key-paths), and
their substitution by trees which are equivalent from the
point of view of the network connectivity.

4 A Tree-Based Local Search

The local search strategy proposed is a generalization of
the key-path based local search, proposed by Verhoeven,
Severens and Aarts [14] in context of the Steiner tree
problem. A key-path is a path such that its end-points
are either non-fixed switch sites of degree at least 3, or
fixed switch sites; and all its intermediate nodes are non-
fixed switch sites of degree 2. We employ the following
property:

Proposition 4.1 Let � ? WXTZY � [be a feasible solu-
tion. If each edge of � belongs to some path between
two terminals, then it is possible to decompose � in key-
paths (i.e., there is a set of key-paths such that every
edge of � belongs to one and only one key-path). We
will denote by Y 5 � 9 � 5[Z]\ 7
^�^
^$7 Z`_ 9 the decomposition
of � in key-paths, ordered by decreasing cost.

Definition 4.2 (Neighborhood Structure)
Let � B ? W�TZY �\[be a feasible solution. Given a key-
path Zba � B , we define a neighbor solution of � B as:c� B � 5 � B�d	e�fhg]e6i 5[Z 9�9;jlk , where k is a tree rooted
in one end-point of Z and built maintaining the feasibil-
ity in the new network

c� B . The Tree Neighborhood of� B is composed of the neighbor solutions obtained by
applying the previous operation to each of the different
key-paths in Y 5 � B 9 �-5[Z]\ 7�^
^
^�7 Z�_ 9 .

The pseudo-code of §@¨¥©¥ª m�¬A²
n ´ ³poqni°8²?r is given in
Figure 3. The local search algorithm works upon the
original problem data (the network H I , the matrix � ,
and the matrix +) and takes as additional inputs the
set ¶ of already found paths, and the decomposition
in key-paths Y 5 � ����� 9 associated to � ����� . The algorithm
searches the best neighbor in the Tree Neighborhood.
Iteratively the local search analyzes each key-path of
the decomposition Y 5 � ����� 9 , replacing (if it is possible)
a key-path by a tree of smaller cost, maintaining the fea-
sibility of the current solution. This tree is computed
by an algorithm (represented in the pseudo-code by thesut 4v wX°xo
o function) which works upon an auxiliary net-
work searching a tree rooted at one of the end-points of
the current key-path; we describe below the details.

When there are no more improvements to be obtained
by substituting key-paths by trees, the best feasible so-
lution and the set of found paths are returned.
In order to describe the algorithm

sut 4v w�°xo
o we intro-
duce the following notations and definitions.

Notation 4.3 Let � be the the current network built it-
eratively by §¢¨C©/ª «¬ �®�¯�°y±�²$¯8³:¬&´ . Given a key-pathy ? Y 5 �Z9 , we denote:z={ 5 � 9 �}| 5K· ¸¹ 7 · º ¹ 9 ? � �������~ � ������ � ��Z ? ¶ ��� 7 so that y � Z�� ^
This is the set of pairs of switch sites of � ������ with at
least one path Z ? ¶ ��� such that y � Z (i.e., the pairs of
switch sites whose connection depends on the key-pathy).

Procedure BNDP Local Search(� , �J{X� ����� |);
1 repeat
2 ^"s¥v:ltq��id ����� � ��� ;
3 for }�~��(¦
	�	�	<¦� �J{X� ����� |�� do
4 Let v�� be the } -th key-path;
5 � ��� U���N �x�>�8�k{"| ;
6 if {���2F7
��{��C| ����247
��{�v � |�| then
7 � ������� {X� ����� . v��$| P � ;
8 � �RQ	S N6�$�>� �
�t�>�6�${9� ¦�v���¦��¥| ;
9 �J{X� ����� | �RQLS N&�t�>� ���
�&�
�t�>�&�8{��J{X� ����� |�¦�v � ¦��C| ;
10 ^"s¥v:ltq��id � ��M Q � ;
11 end if;
12 end for;
13 until �6���${�^�s¥v:l�q��idt| ;
14 return � ����� , � ;

Figure 3: Local Search Phase pseudo-code.

Notation 4.4 Given a path Z ? ¶ ��� and two switch sites· \ 7 ·�� ? Z , we denote by Z A B� ! B�! E the sub-path from · to· ! on Z .

Definition 4.5 Let � ? WXTZY � [be the feasible solution
computed by §¢¨C©/ª «¬&�®>¯y°�±x²<¯8³A¬ ´ . Given a key-pathy ? Y 5 � 9 and given "· ? ��� one of its end-points, we
define the following set:# � {�$ %� � 5 � 9 � &

ACB ¸D ! B º D E #(' { A G E
)* &+ #�, ¸ º ! -�./ + ! HB .0 B º D2143 f]e6i 5[Z 9�56 ^

This set is the union over every pair of sites ·r¸¹ , ·�º¹
which depend on key-path y , of all the nodes belonging
to paths in ¶ ��� which do not contain y .
Definition 4.6 Let � ? WXTZY � [be the feasible solution
built by §¢¨¥©¥ª «¬ �®�¯�°y±�²<¯<³:¬ ´ . Given a key-path y ?
Y 5 � 9 and given "· ? � � one of its end-points, we define
the key-graph associated to 5�y 7 "· 9 as:

w � {7$8%� � � �xZ A HB ! B º D E � · º ¹ ? � ������ 7 �p· �¹ ? � ������ B 5K· �¹ 7 · � ¹ 9 ?z -r5 � 9 and Z A HB ! B º D E a Z ACB ¸D ! B º D E ? ¶ ���i� ^
This is a graph formed by the union over every pair of
sites · ¸¹ , · º ¹ which depend on key-path y , of all the sub-
paths � Z A HB ! B º D E � Z A HB ! B º D E a)Z ACB ¸D ! B º D E ? ¶ ��� � .
Figure 4 shows the pseudo-code of

s t 4v wX° o�o . This al-
gorithm tries to compute a low-cost tree k on the aux-
iliary network "� (defined in Figure 4), considering the
auxiliary matrix "+ , so that replacing in the current so-
lution the key-path Z � by the computed tree k the fea-
sibility is preserved, creating thus a new neighbor so-
lution, that is: k j 5 � ����� d Z � 9 ? WXTXY �\[. For this,
it considers each endpoint

c· of Z � building a tree k�9 ¸;:
with root

c· having as endpoints nodes of w � � � $ %� � (where"· is the other endpoint of Z �). In particular, this tree
is integrated by the shortest paths from

c· to each path

Procedure Find Tree(� , �J{X� ����� | ,v �);
1 sN^�n zyq(_y` �=< ; � � v�� ;
2 Let : _� 8¦�_>! < be the end-points of v � ;
3 for each ?_ " : _ ¦>_ ! < do
4 +� � , I .A@ � � � $ %� � {X� ����� | ; +_ � : _ ¦�_ ! < . ?_ ;
5 Compute +> :

+z?� � �
@ (if ACB ¸D ! B º D`E #*G ����� ,zx� � if ACB ¸D ! B º D`E # A HG	J]G ����� E . ;

6 B ��� ��C T U�� : ��247
��{�v 9 ¸;: |�¦���2F7D�x{�� 9 ¸E: | < where:v 9 ¸E: is the shortest path from _ to _ ! on +� ,� 9 ¸;: is a tree of minimum cost connecting?_ with a node of v .;: +_ < , �rv " � � � � $8%� � ;
7 if {���247
��{FB | ��sN^"n zyq(_8`�| then
8 sN^"n zyq(_y` � ��247
��{FB | ; � � B ;
9 end if;
10 end for each;
11 return � ;

Figure 4: Find Tree pseudo-code.

Z A HB ! B º D E ? w � � � $ %� � on network "� , guaranteeing thus the
non-loss of one level of connectivity (once the key-pathZ � is substituted) with respect to the set of fixed switch
sites �r· º ¹ � Z A HB ! B º D E ? w � � � $8%� � � . The problem is a variant
of the single-source shortest paths problem, and can be
solved using Dijkstra’s algorithm.

Moreover the shortest path Z 9 ¸E: between both ends
of Z � is computed on network "� . By construction, k�9 ¸E:
and Z 9 ¸;: will satisfy:

- k�9 ¸E: j 5 ������� d Z � 9 ? W TZY � [,

- Z 9 ¸;: j 5 ������� d Z � 9 ? W TZY �\[.

Both of them are taken into account in order to find the
best neighbor alternative (i.e. with smaller cost), which
will be returned by

s t 4v w�°xo
o .
5 Implementation and Perfor-

mance Tests

We present here some experimental results obtained
with the algorithm presented in the previous section.

The algorithm was implemented in ANSI C language.
Adjacency matrices were used as data structures for the
representation of graphs. The experiments were ob-
tained on a Pentium III computer with 800 MHz, and
256 MB of RAM memory, running under Windows NT
4 operating system.

All instances were solved with identical parameter
settings. The candidate list size was �) ·����)���� �HG ,
and the maximum number of iterations µJILKNM � � � �OG�P .
These values were chosen considering the GRASP ref-
erence literature [5, 6].

We selected four test problems as experimental suite,
to investigate the effectiveness of the proposed method.
A requirement was that an optimal solution (or at least

the optimal value) was known, so that GRASP results
could be properly evaluated. Two instances of large size
with known solutions were obtained from previous liter-
ature. Besides, we introduce other two instances which
were designed constructively applying certain topolog-
ical properties that preserve the optimality of a known
optimal solution. In [4] we give a detailed description
for these and other instances, with information about
known optimal solutions, and their construction.

Figure 5 shows the topologies associated to the test
cases 1, 2, 3 and 4. The black nodes represent the fixed
switch sites, while the white nodes represent other po-
tential switch sites, which may or may not be included
in the solution (Steiner nodes). We describe below the
main characteristics of the four problem instances.

� Network 1 is a simplified version of a HSODTN
(High Speed Optical Data Transmission Network)
connecting different parts of a war ship. The re-
duced topology has 9 fixed switch sites (model-
ing strategic point in an aircraft carrier), 55 Steiner
nodes (non-fixed switch sites) and 124 edges. The
objective is to find a 3-node-survivable subnetwork
with minimal cost (all connection requirement be-
tween fixed sites are equal to 3). This model and
other variants can be found in [7, 13]. An optimal
solution having cost 74 has been found by an exact
parallel-distributed backtracking algorithm in [10].

� Network 2 has 41 fixed switch sites, 68 Steiner
nodes and 383 edges. This network was designed
taking as basis four Brinkman sub-graphs (four
Brinkman graphs with two edges less on each
one) interconnected according to Figure 5. The
Brinkman graph is 4-regular, 4-connected and of
girth at least 5 (see for instance [2]). In Figure 5 we
show the built topology; the edges of the Brinkman
sub-graphs are represented by straight lines and the
other connections are represented by dashed lines.
This instance is formulated as a ¨/«��/¨ 5�� 9 prob-
lem [7, 13], which is a particular case of the Gen-
eralized Steiner Problem, where each fixed switch
site ·(¸¹ ? � ������ is labeled with a positive inte-
ger number �(� , and the aim is to find a minimum
cost subnetwork such that for every pair of fixed
switch sites ·(¸¹ 7 ·tº¹ ? ������� there exists at least� ��� ��� t ��� � 7 � � � node-disjoint paths. We have
10 fixed switch sites with � � ��� , 13 fixed switch
sites with � � �	� and 18 fixed switch sites with�(� ��
 . The edge costs were chosen within the� 7
�P�P� range. The topology of a global optimal
solution (of cost 3980) can be seen in [4].

� Network 3 has 22 fixed sites of � ������ , 61 Steiner
sites and 262 feasible connections. The edges have
costs randomly selected in the interval

� &7
�P�P� , sat-
isfying the triangular inequality. The objective is to
find a 4-node-survivable subnetwork spanning � ������
with minimal cost (all connection requirement be-

tween fixed sites are equal to 4). Like in the pre-
vious instance, we known an optimal solution (of
cost 680) obtained from the constructive procedure
used to build this test case. Details of its design as
well as an optimal topology can be seen in [4].

� Networks 4 is a test case based on real net-
work from Bell Communications Research (Bell-
core) [13]. Particularly, we have selected the prob-
lem called LATADL in order to test the perfor-
mance of our algorithm. Link costs are linked
to geographical distances. The LATADL-problem
has 116 fixed sites and 173 feasible connections. In
this problem, there are two classes of nodes: nodes
of type 1, shown as circles in Figure 5, and nodes
of type 2, shown as small squares. The connec-
tivity requirements are that between two nodes of
type 2 there must be two node-disjoint paths; and
between a node of type 2 and a node of type 1, or
between two nodes of type 1, there must be at least
one path. For Network 4 an optimal solution has
been published in [13], with cost 7400.

Table 1 shows some data about the performance of
our GRASP algorithm for each instance. The column
entries are from left to right:

T - the total running time for the µJILK M � � � � G(P
GRASP iterations,

IT - the GRASP iteration number where the best feasi-
ble solution was found,

COPT - the optimum cost,

BCF - the cost of the best feasible solution found by
our algorithm,

GAP -
 P(P ~���������� 3 ���� 3 ��� (=percent relative error),

GAPC -
 P(P ~���� �"! �$#&%('¸*) ��� ��+ ��� 3 ���,.-0/21436587:9 � 3 ��� is the average of

the percentage relative errors computed over the
feasible solutions built in the Construction Phase;
being «�«@ª<; the cost of the built feasible solution
in the GRASP iteration

)
,

GAPL -
 P(P ~��=� �"! �>#?%('¸?)L ��@ i + �A� 3 ���,B-C/21436587:9 � 3 ��� is the average of

the percentage relative errors computed over the
feasible solutions built in the Local Search Phase;
being «LmX³�; the cost of the best found neighbor fea-
sible solution in the GRASP iteration

)
.

We observe that the GRASP algorithm has very good
results, as an optimal solution is obtained for the first
three cases, and a sub-optimal solution with percentage
relative error of P ^ D P for the last case. To understand the
contributions of the initial construction procedure and
of the local search algorithm, we show in the last two
columns the average gaps of the solutions found in these
two steps. We can observe that the construction proce-
dure already obtains good results, as the average gaps

Topology T IT COPT BCF GAP GAPC GAPL

Network 1 93 3 74 74 0% 2.29% 0.47%
Network 2 145 11 3980 3980 0% 2.40% 0.34%
Network 3 117 7 680 680 0% 2.05% 0.39%
Network 4 139 14 7400 7445 0.60% 3.11% 0.73%

Table 1: GRASP results.

4
4 4

2

4

2

4
2 2

2
2

3

2 2

2

3

224

3

33

3

3

2 2

4

4
4

3

2

4

3

3 3

3

3

2 2

4

4

Figure 5: Topologies associated to the instances 1, 2, 3 and 4.

are about
 � ��� in all the cases. All the same, the lo-
cal search algorithm obtains a very significant improve-
ment, as average gaps after its application are less thanP ^ G�� in three cases, and about P ^�� G�� in the remaining
one. This shows that even when the construction proce-
dure furnishes good quality solutions, the tree neighbor-
hood proposed is powerful enough and can be used with
a simple local search to find improved solutions.

6 Conclusions

We described a greedy randomized search adaptive pro-
cedure for the Backbone network design problem with
heterogeneous connectivity requirements. This problem
can be modeled as a Generalized Steiner Problem with
node-connectivity requirements.

The local search procedure that we propose is based
on decomposing the current solution into its key-path
components, and trying to substitute each of these key-
paths by an equivalent (from the point of view of termi-
nal connectivity) tree, of smaller cost.

The implementation of our algorithm was tested on
different problems with known optimal solutions, either
taken from literature related to the problem or gener-
ated in order to preserve known optimal, and was shown
to find good quality solutions within few iterations (in
most cases an optimal solution was found; the only ex-
ception was one case where the cost of the best solution
found was within P ^ D4 � of the optimum). The construc-
tion phase of the GRASP obtained solutions which were
usually between
�� and ��� more costly than the opti-
mal ones; on the other hand, each local search iteration
obtained results which were on average much nearer the
optimum (average gaps in the order of P ^ G��). These are
interesting results considering that to compute the best
solution is a NP-Hard problem.

7 Acknowledgments

This work is a result of the PAIR project, funded by the
INRIA, France. The participation of Franco Robledo
has been funded by the PDT program (MEC, Uruguay).

References

[1] M.Baı̈ou and A.R. Mahjoub, “Steiner 2-edge-
connected subgraph polytopes on series-parallel
graphs”, SIAM Journal on Discrete Mathematics
10 (3), pages 505-514 (1997).

[2] B. Bollobas, Modern Graph Theory, Springer
(1998).

[3] H. Cancela, F. Robledo and G. Rubino, “Net-
work design with node connectivity constraints”,
LANC’03 (IFIP/ACM Latin America Networking

Conference 2003), October 3-5, La Paz, Bolivia
(2003).

[4] H. Cancela, F. Robledo and G. Rubino, “A GRASP
algorithm for the Generalized Steiner Problem
with Node Connectivity Constraints”, Internal Re-
port IRISA 1586 (2003).

[5] T.A. Feo and M.G.C Resende, “A probabilistic
heuristic for a computationally difficult set cover-
ing problem”, Operations Research Letters, 8:67-
71 (1989).

[6] T.A. Feo and M.G.C Resende, “Greedy ran-
domized adaptive search procedures”, Journal of
Global Optimization, 6:109-133 (1995).

[7] M. Grötschel, C.L. Monma, and M. Stoer, “Poly-
hedral and computational investigations for de-
signing communication networks with high sur-
vivability requirements”, Operations Research 43
(1995), pages 1012-1024.

[8] A.R. Mahjoub, “Two-edge-connected spanning
subgraphs and polyhedra”, Mathematical Pro-
gramming 64 (1994), pages 199-208.

[9] M. Priem and F. Priem, “Ingénierie des WAN”,
ISBN 2-10-004510-5, Dunod InterEditions
(1999).

[10] F. Robledo, “Diseño topológico de redes : ca-
sos de estudio The generalized Steiner problem
y The Steiner 2-Edge-Connected subgraph prob-
lem”. Master Thesis (2000). F. de Ingenierı́a,
UDELAR, Montevideo, Uruguay.

[11] F. Robledo and O. Viera, “A parallel algorithm for
the Steiner 2-edge-survivable network problem”,
Internal Report 1504, IRISA (2002).

[12] K. Stiglitz, P. Weiner, D. J. Kleitman, “The de-
sign of minimum-cost survivable networks”, IEEE
Trans. on Circuit Theory, CT-16, 4 (1969) pages
455-460.

[13] M. Stoer, “Design of Survivable Networks”, Lec-
ture Notes in Mathematics, ISBN 3-540-56271-0,
ISBN 0-387-56271-0, Springer-Verlag (1996).

[14] M.G.A. Verhoeven, M.E.M. Severens, and E.H.L.
Aarts, “Local search for Steiner trees in graphs”, In
Modern Heuristics Search Methods, V.J. Rayward-
Smith et al. (Eds.), John Wiley, 117-129 (1996).

[15] P. Winter, “Generalized Steiner problem in series-
parallel networks”, Journal of Algorithms 7
(1986), pages 549-566.

[16] P. Winter, “Steiner problem in networks: A sur-
vey”, Networks 17 (1987), pages 129-167.

[17] J. Y. Yen, “Finding the K shortest loopless paths in
a network”, Management Science 17 (1971), pages
712-716.

